تیتر خبرها

اصلاح مدل در ایموس

 اصلاح مدل در ایموس

اگر شاخص های برازش کلی مدل در مجموع قابل قبول نباشند، با این پرسش مواجه می شویم که آیا با برخی اصلاحات می توان مدل را به حد قابل قبول ارتقا داد؟ اولین پاسخی که می توان به چنین پرسشی داد آن است که هرچه شاخص های برازش مدل به نقاط قالب قبول نزدیک تر باشند احتمال ارتقا مدل به حد قالب قبول با برخی اصلاحات بیشتر است.

اولین و مهمترین نکته ای که به هنگام اصلاح یک مدل لازم است راهنمای پژوهشگر باشد آن است که توجیه نظری بر توجیه کمی و آماری ارجحیت دارد به نحوی که نمی توان صرفا برمبنای توجیه کمی و آماری دست به چنین اصلاحاتی زد. تغییر مدل به نحوی که نتوان برای آن توجیهی نظری و یا حتی منطقی ارائه داد، صرفا به این دلیل که شاخص های برازش به نحو قابل توجهی بهبود می یابند به لحاظ علمی قابل قبول نیست.

ولی در هر حال شاخص های آماری می توانند مسیر اصلاح مدل را به پژوهشگر نشان دهند. چنانچه بتوان توجیه نظری یا منطقی برای چنین اصلاحاتی ارائه داد پژوهشگر اغلب به اصلاح مدل سوق خواهد یافت.

اما برای اصلاح یک مدل چه کارهایی می توان انجام داد؟شاید بتوان مجموعه اصلاحات ممکن را به سه دسته تقسیم نمود : یک گروه اصلاحاتی هستند که به متغیرهای حاضر در مدل یا غایب از مدل مربوط می شوند. ممکن است بتوان متغیرهایی را از مدل حذف کرد، متغیرهایی را به مدل افزود و یا اینکه دو یا چند متغیر را با هم ادغام کرد. گاه نیز ممکن است یک سازه پنهان را به دو یا چند سازه فرعی تجزیه کرد.

گروه دوم از اصلاحات آنهایی هستند که به داده های ورودی مربوط می شوند. ممکن است یک مدل در یک نمونه از یک جامعه آماری شاخص های برازش قابل قبولی را نشان ندهد در حالی که همان مدل اگر برای گروهی فرعی از همان نمونه مورد تجزیه و تحلیل قرار گیرد نتیجه بهتری را نشان دهد. بنابراین تهیه ماتریس واریانس-کواریانس مشاهده شده برای گروه های فرعی که احتمال می دهیم نتایج را تغییر دهد می تواند مورد توجه پژوهشگر قرار گیرد.

گروه سوم از اصلاحات، گروهی هستند که به پارامترهای آزاد و ثابت در مدل تدوین شده مربوط می شوند. این امکان وجود دارد که از طرفی با ثابت کردن برخی از پارامترهای آزاد و از طرف دیگر با آزاد کردن برخی پارامترهای ثابت(و بعضی مواقع مقید) بتوان به بهبود شاخص های برازش کلی مدل دست یافت.  با اندکی تساهل علمی می توان به جای ثابت کردن پارامترهای آزاد از اصطلاح«حذف مسیر» و به جای آزاد کردن پارامترهای ثابت از اصطلاح «افزودن مسیر» بهره برد.

نکته :

یکی از نکات بسیار مهم در اصلاح مدل که لازم است همواره مدنظر داشته باشیم آن است که اصلاح مدل را جزء به جزء به انجام رسانده و پس از هر اصلاح جزئی تغییرات حاصل در مدل را تحلیل کنیم. به عنوان مثال اگر نتایج آماری نشان می دهند که می توان دو پارامتر را به مدل افزود بهتر است که ابتدا یکی از پارامترها به مدل افزوده شود، تغییرات حاصله ارزیابی شود و سپس در صورتی که برآوردهای جدید پیشنهاد افزودن پارامتر دوم را به مدل می دهند چنین کاری به انجام رسد. البته برخی محققین خلاف این نظر را بیان می کنند و توافقی در آن وجود ندارد. از طرفی این اصلاحات در  از مدل اندازه گیری در ایموس آغاز می شود.  

ثابت کردن پارامترهای آزاد :

در خروجی های متنی Amos برای کلیه پارامترهای برآورد شده، نسبت بحرانی که همان نسبت مقدار برآورد شده برای پارامتر به خطای معیار آن است گزارش می شود. می توان از این نسبت ها و سطح معناداری مرتبط با آن ها مشخص کرد که کدامیک از پارامترهای برآورد شده فاقد تفاوت معنادار با مقدار صفر هستند. اگر پارامتری فاقد تفاوت معنادار باشد به این معنا است که به لحاظ اماری می توان آن را از مدل تدوین شده حذف کرد. حذف چنین پارامتری به معنای ثابت کردن آن به مقدار صفر است.

پارامترهای آزاد در مدل را می توان به سه گروه تقسیم کرد که شامل واریانس ها، کواریانس ها (ضرایب همبستگی) و وزن های رگرسیونی(بارهای عاملی یا ضرایب تأثیر) می شوند. اصولا امکان ثابت کردن واریانس به یک مقدار مشخص اغلب اوقات بی معنی جلوه می کند. اما ثابت کردن کواریانس ها یا ضرایب رگرسیونی می تواند بر مبنای نتایج آماری منطقی تفسیر شود. پس از حذف چنین پارامترهایی شاخص های کلی برازش در سه گروه شاخص های مطلق، تطبیقی و مقتصد بار دیگر مورد وارسی قرار می گیرند تا نتایج چنین حذفی تحلیل شوند.  

آزاد کردن پارامترهای ثابت :

هموراه این پرسش برای پژوهشگر مطرح است که آیا می توان با آزاد کردن پارامترهایی که در مدل اولیه آن ها را ثابت تعریف کرده ایم شاخص های مطلق، تطبیقی و مقتصد را بهبود بخشید. در این باره نیز شاخص هایی رابه نام شاخص اصلاح می توان در خروجی Amos درخواست کرد که در پاسخ به چنین پرسشی پژوهشگر را یاری می رساند.

شاخص های اصلاح در مجموع نشان می دهند که اگر پارامتری را به مدل بیافزاییم تا چه مقدار می تواند سبب کاهش آماره کای دو مدل شود. انچه قابل توجه است این که با افزودن پارامتر به مدل مقدار کای دو تاحدودی کاهش می یابد اما باید بررسی کرد که آیا این کاهش از لحاظ آماری معنادار است یا خیر. در خروجی Amos سه جدول مختلف برای کواریانس ها، واریانس ها و ضرایب رگرسیون گزارش می شوند.

از انجایی که واریانس های متغیرهای بیرونی در مدل اصلی آزاد تعریف شده اند جدول شاخص های اصلاح مرتبط با واریانس ها هیچ اصلاحی را پیشنهاد نمی کنند. گاه ممکن است که نتایج نشان دهند که متغیرهای خطا را می توان با یکدیگر همبسته کرد.

معمولا به سه دلیل روش شناختی ممکن است متغیرهای خطا را با یکدیگر همبسته کرد. اول اینکه مقیاس های اندازه گیری دو متغیر یکسان باشند. دیگر اینکه دو متغیر درواقع یک متغیر هستند که در دو زمان مختلف اندازه گیری شده اند و سوم اینکه دو متغیر اصل یدارای همبستگی بالایی با یکدیگر باشند به نحوی که انتظار می رود عوامل تأثیر گذار بر آن ها که در مدل لحاظ نشده اند تا حد زیادی مشابه باشند.

در مجموع می توان گفت با افزودن پارامتری در رابطه با وزن های رگرسیونی و یا با افزودن پارامتری در رابطه با همبسته کردن متغیرهای خطا بتوان به کاهش یکسانی در کای دو دست یافت.  اما افزودن وزن های رگرسیونی به لحاظ نظری می تواند قابلیت توجیه بالاتری داشته باشد.

اگر چه این مفاهیم کمی سنگین به نظر می رسد اما در دوره های ایموس آکادمی تحلیل آماری ایران اصلاح مدل را کلیه فراگیران به آسانی می آموزند.

 

در صورت استفاده از مطالب منبع آن که آکادمی تحلیل آماری ایران است حتما ذکر شود.

درباره ی admin

مطلب پیشنهادی

کلاس جامع ترمیک آنلاین مقدماتی تا پیشرفتهspss

✅مژده: کلاس جامع ترمیک آنلاین مقدماتی تا پیشرفته spss دکتر محسن مرادی با ارائه گواهینامه …

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *