تحليل عاملي اکتشافي (efa) و تحليل عاملي تاييدي (cfa)

تحليل عاملي مي‌تواند دو صورت اکتشافي و تاييدي داشته باشد. اينکه کدام يک از اين دو روش بايد در تحليل عاملي به کار رود مبتني بر هدف تحليل داده هاست.

در تحليل اکتشافي(Exploratory factor analysis) پژوهشگر به دنبال بررسي داده‌هاي تجربي به منظور کشف و شناسايي شاخص‌ها و نيز روابط بين آنهاست و اين کار را بدون تحميل هر گونه مدل معيني انجام مي‌دهد. به بيان ديگرتحليل اکتشافي(Exploratory factor analysis) علاوه بر آنکه ارزش تجسسي يا پيشنهادي دارد مي‌تواند ساختارساز، مدل ساز يا فرضيه ساز باشد.

تحليل اکتشافي وقتي به کار مي‌رود که پژوهشگر شواهد کافي قبلي و پيش تجربي براي تشکيل فرضيه درباره تعداد عامل‌هاي زيربنايي داده‌ها نداشته و به واقع مايل باشد درباره تعيين تعداد يا ماهيت عامل‌هايي که همپراشي بين متغيرها را توجيه مي‌کنند داده‌ها را بکاود. بنابر اين تحليل اکتشافي بيشتر به عنوان يک روش تدوين و توليد تئوري و نه يک روش آزمون تئوري در نظر گرفته مي‌شود.

تحليل عاملي اکتشافي روشي است که اغلب براي کشف و اندازه گيري منابع مکنون پراش و همپراش در اندازه گيري‌هاي مشاهده شده به کار مي‌رود. پژوهشگران به اين واقعيت پي برده اند که تحليل عاملي اکتشافي مي‌تواند در مراحل اوليه تجربه يا پرورش تستها کاملا مفيد باشد. توانشهاي ذهني نخستين ترستون ، ساختار هوش گيلفورد نمونه‌هاي خوبي براي اين مطلب مي‌باشد. اما هر چه دانش بيشتري درباره طبيعت اندازه گيري‌هاي رواني و اجتماعي به دست آيد ممکن است کمتر به عنوان يک ابزار مفيد به کار رود و حتي ممکن است بازدارنده نيز باشد.

از سوي ديگر بيشتر مطالعات ممکن است تا حدي هم اکتشافي و هم تاييدي باشند زيرا شامل متغير معلوم و تعدادي متغير مجهول‌اند. متغيرهاي معلوم را بايد با دقت زيادي انتخاب کرد تا حتي الامکان درباره متغيرهاي نامعلومي که استخراج مي‌شود اطلاعات بيشتري فراهم‌ ايد. مطلوب آن است که فرضيه اي که از طريق روش‌هاي تحليل اکتشافي تدوين مي‌شود از طريق قرار گرفتن در معرض روش‌هاي آماري دقيق‌تر تاييد يا رد شود. تحليل اکتشافي نيازمند نمونه‌هايي با حجم بسيار زياد مي‌باشد.

در تحليل عاملي تاييدي(Confirmatory factor analysis) ، پژوهشگر به دنبال تهيه مدلي است که فرض مي‌شود داده‌هاي تجربي را بر پايه چند پارامتر نسبتا اندک، توصيف تبيين يا توجيه مي‌کند. اين مدل مبتني بر اطلاعات پيش تجربي درباره ساختار داده هاست که مي‌تواند به شکل: 1) يک تئوري يا فرضيه 2) يک طرح طبقه بندي کننده معين براي گويه‌ها يا پاره تستها در انطباق با ويژگي‌هاي عيني شکل و محتوا ، 3)شرايط معلوم تجربي و يا 4) دانش حاصل از مطالعات قبلي درباره داده‌هاي وسيع باشد.

تمايز مهم روش‌هاي تحليل اکتشافي و تاييدي در اين است که روش اکتشافي با صرفه‌ترين روش تبيين واريانس مشترک زيربنايي يک ماتريس همبستگي را مشخص مي‌کند. در حالي که روش‌هاي تاييدي (آزمون فرضيه) تعيين مي‌کنند که داده‌ها با يک ساختار عاملي معين (که در فرضيه آمده) هماهنگ اند يا نه.

درباره ی admin

مطلب پیشنهادی

دستبرد علمی توسط محقق نماها

دستبرد علمی توسط محقق نماها هدف از این نوشتار رعایت اخلاق و امانت داری علمی …

4 دیدگاه

  1. سلام خسته نباشید میشه در تبلیغاتتون مثلا fxtm از زنان پوشیده ایرانی استفاده کنید.

    • عزیزم ما تبلیغ نداریم. اونم مال طراح سایت بوده واقعا نمی دونم از کجا بردارم. اگر راهنمایی کنی ممنون می شم. کار ما ترویج پژوهشه و تبلیغ نمی گیریم

  2. با سلام خدمت استاد مرادی
    در تحلیل عاملی اکتشافی در spss وقتی از کدها، متغیرها ساخته میشود حالا اگر بخواهیم متغیرها را نیز دسته بندی کنیم و به سازه برسیم میتوانیم مجد تحلیل عاملی اکتشافی بزنیم ؟ چگونه میشود ؟

    • بله. البته به شرطی بین متغیر ها از نظر مفهومی ارتباط باشه. ضمنا این سوالات تو کلاس جواب داده شده

پاسخی بگذارید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

آکادمی تحلیل آماری ایران

پیوستن به کانالی آموزشی
CLOSE