تحلیل ناهمگنی داده ها در نرم افزار اسمارت پی ال اس
از زمانی که روش حداقل مربعات جریی مورد توجه و استفاده پژوهشگران در رشته های مختلف مدیریتی مانند مدیریت استراتژیک، مدیریت بازاریابی و مدیریت سیستم های اطلاعات قرار گرفته است، تا به حال یک چالش هنوز پیش روی محققین قرار داد که مطالعات زیادی نیز درباره آن انجام نشده است. این موضوع همان ناهمگنی داده ها(heterogeneity) است که باعث گردیده تا یک قسمت به طور مجزا در نرم افزارهای PLS به این موضوع اختصاص یابد.
به طور نمونه در نرم افزار Smart PLS قسمتی با نام FIMIX-PLS در منوی Calculate قرار داد. در حقیقت روش های تحلیل آماری از جمله PLS، فرض می کنند که داده های گردآوری شده برای تحلیل از یک جامعه آماری مشخص انتخاب می شوند در حالی که این فرض غیر واقعی بوده و نرم افزارهای تحلیل آماری در نسخه های جدیدتر به این موضوع توجه ویيه ای کرده اند.
ناهمگنی به این موضوع اشاره دارد که ممکن است داده های رسیده به دست پژوهشگر همگی از یک جنس و از یک خانواده نباشند. بنابراین تحلیل آنها تحت یک گروه درست نیست زیرا نتایجی که بدست خواهد آمد دقیق نیست و محقق را دچار اشتباه و سردرگمی در تفسیر نتایج می سازد.
درباره اهمیت توجه به ناهمگنی داده ها محققین زیادی اطهار نموده اند. ویلیامز و همکاران(2002) ادعا نموده اند که عدم توجه به موضوع ناهمگنی داده ها در دو قسمت مدلسازی معادلات ساختاری یعنی بخش مدل اندازه گیری و بخش مدل های ساختاری، محقق را دچار مشکل می سازد. در مطالعات مربوط به سنجش رضایت مشتری، جدیدی و همکاران(1997)، هان و همکاران(2002) و همچنین سارستد و همکاران(2009) نشان داده اند که نتایج تحلیل داده ها در مواقعی که تفاوت معناداری بین مقادیر تخمین زده شده در گروه های مختلف وجود دارد، می تواند گمراه کننده باشد.
بنابراین توجه به این موضوع و بررسی ناهمگنی داده ها بسیار حائز اهمیت است و پژوهشگرانی که از روش مدل سازی معادلات ساختاری استفاده می کنند باید برای اطمینان از اینکه تحلیل کل داده ها در تحقیق آنها تحت تاثیر ناهمگنی داده ها قرار نگرفته است، از این روش استفاده کرد و نتایج را گزارش دهند.