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Abstract Discriminant validity assessment has become a
generally accepted prerequisite for analyzing relationships
between latent variables. For variance-based structural equa-
tion modeling, such as partial least squares, the Fornell-
Larcker criterion and the examination of cross-loadings are
the dominant approaches for evaluating discriminant validity.
By means of a simulation study, we show that these ap-
proaches do not reliably detect the lack of discriminant valid-
ity in common research situations. We therefore propose an
alternative approach, based on the multitrait-multimethod ma-
trix, to assess discriminant validity: the heterotrait-monotrait
ratio of correlations. We demonstrate its superior performance
by means of a Monte Carlo simulation study, in which we
compare the new approach to the Fornell-Larcker criterion
and the assessment of (partial) cross-loadings. Finally, we
provide guidelines on how to handle discriminant validity
issues in variance-based structural equation modeling.
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Introduction

Variance-based structural equation modeling (SEM) is
growing in popularity, which the plethora of recent devel-
opments and discussions (e.g., Henseler et al. 2014;
Hwang et al. 2010; Lu et al. 2011; Rigdon 2014;
Tenenhaus and Tenenhaus 2011), as well as its frequent
application across different disciplines, demonstrate (e.g.,
Hair et al. 2012a, b; Lee et al. 2011; Peng and Lai 2012;
Ringle et al. 2012). Variance-based SEM methods—such
as partial least squares path modeling (PLS; Lohmöller
1989; Wold 1982), generalized structured component
analysis (GSCA; Henseler 2012; Hwang and Takane
2004), regularized generalized canonical correlation anal-
ysis (Tenenhaus and Tenenhaus 2011), and best fitting
proper indices (Dijkstra and Henseler 2011)—have in
common that they employ linear composites of observed
variables as proxies for latent variables, in order to esti-
mate model relationships. The estimated strength of these
relationships, most notably between the latent variables,
can only be meaningfully interpreted if construct validity
was established (Peter and Churchill 1986). Thereby, re-
searchers ensure that the measurement models in their
studies capture what they intend to measure (Campbell
and Fiske 1959). Threats to construct validity stem from
various sources. Consequently, researchers must employ
different construct validity subtypes to evaluate their re-
sults (e.g., convergent validity, discriminant validity, cri-
terion validity; Sarstedt and Mooi 2014).
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In this paper, we focus on examining discriminant validity
as one of the key building blocks of model evaluation
(e.g.,Bagozzi and Phillips 1982; Hair et al. 2010).
Discriminant validity ensures that a construct measure is
empirically unique and represents phenomena of interest that
other measures in a structural equation model do not capture
(Hair et al. 2010). Technically, discriminant validity requires
that “a test not correlate too highly with measures from which
it is supposed to differ” (Campbell 1960, p. 548). If discrim-
inant validity is not established, “constructs [have] an influ-
ence on the variation of more than just the observed
variables to which they are theoretically related” and,
as a consequence, “researchers cannot be certain results
confirming hypothesized structural paths are real or
whether they are a result of statistical discrepancies”
(Farrell 2010, p. 324). Against this background, discrim-
inant validity assessment has become common practice
in SEM studies (e.g., Shah and Goldstein 2006; Shook
et al. 2004).

Despite its obvious importance, researchers using variance-
based SEM usually rely on a very limited set of approaches to
establish discriminant validity. As shown in Table 1, tutorial
articles and introductory books on PLS almost solely
recommend using the Fornell and Larcker (1981) criterion
and cross-loadings (Chin 1998). Reviews of PLS use suggest
that these recommendations have been widely applied in
published research in the fields of management informa-
tion systems (Ringle et al. 2012), marketing (Hair et al.
2012a), and strategic management (Hair et al. 2012b).
For example, the marketing studies in Hair et al.'s
(2012a) review that engage in some type of discriminant
validity assessment use the Fornell-Larcker criterion
(72.08%), cross-loadings (7.79%), or both (26.13%).
Reviews in other disciplines paint a similar monotonous
picture. Very few studies report other means of
assessing discriminant validity. These alternatives in-
clude testing whether the latent variable correlations
are significantly different from one another (Milberg
et al. 2000) and running separate confirmatory factor
analyses prior to employing variance-based SEM
(Cording et al. 2008; Pavlou et al. 2007; Ravichandran
and Rai 2000) by using, for example, Anderson and
Gerbing's (1988) test as the standard.1

While marketing researchers routinely rely on the Fornell-
Larcker criterion and cross-loadings (Hair et al. 2012a), there
are very few empirical findings on the suitability of these
criteria for establishing discriminant validity. Recent research
suggests that the Fornell-Larcker criterion is not effective

under certain circumstances (Henseler et al. 2014; Rönkkö
and Evermann 2013), pointing to a potential weakness in the
most commonly used discriminant validity criterion.
However, these studies do not provide any systematic assess-
ment of the Fornell-Larcker criterion’s efficacy regarding
testing discriminant validity. Furthermore, while researchers
frequently note that cross-loadings are more liberal in terms of
indicating discriminant validity (i.e., the assessment of cross-
loadings will support discriminant validity when the Fornell-
Larcker criterion fails to do so; Hair et al. 2012a, b; Henseler
et al. 2009), prior research has not yet tested this notion.

In this research, we present three major contributions to
variance-based SEM literature on marketing that are rele-
vant for the social sciences disciplines in general. First,
we show that neither the Fornell-Larcker criterion nor the
assessment of the cross-loadings allows users of variance-
based SEM to determine the discriminant validity of their
measures. Second, as a solution for this critical issue, we
propose the heterotrait-monotrait ratio of correlations
(HTMT) as a new approach to assess discriminant validity
in variance-based SEM. Third, we demonstrate the effica-
cy of HTMT by means of a Monte Carlo simulation, in
which we compare its performance with that of the
Fornell-Larcker criterion and with the assessment of the
cross-loadings. Based on our findings, we provide re-
searchers with recommendations on when and how to
use the approach. Moreover, we offer guidelines for
treating discriminant validity problems. The findings of
this research are relevant for both researchers and practi-
tioners in marketing and other social sciences disciplines,
since we establish a new standard means of assessing
discriminant validity as part of measurement model eval-
uation in variance-based SEM.

Traditional discriminant validity assessment methods

Comparing average communality and shared variance

In their widely cited article on tests to evaluate structural
equation models, Fornell and Larcker (1981) suggest that
discriminant validity is established if a latent variable
accounts for more variance in its associated indicator
variables than it shares with other constructs in the same
model. To satisfy this requirement, each construct’s av-
erage variance extracted (AVE) must be compared with
its squared correlations with other constructs in the mod-
el. According to Gefen and Straub (2005, p. 94), “[t]his
comparison harkens back to the tests of correlations in
multi-trait multi-method matrices [Campbell and Fiske,
1959], and, indeed, the logic is quite similar.”

The AVE represents the average amount of variance that a
construct explains in its indicator variables relative to the

1 It is important to note that studies may have used different ways to
assess discriminant validity assessment, but did not include these in the
main texts or appendices (e.g., due to page restrictions). We would like to
thank an anonymous reviewer for this remark.
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overall variance of its indicators. The AVE for construct ξj is
defined as follows:

AVEξ j ¼

XK j

k¼1

λ2jk

XK j

k¼1

λ2jk þΘ jk

; ð1Þ

where λjk is the indicator loading and Θjk the error variance
of the kth indicator (k = 1,…,Kj) of construct ξj.Kj is the number
of indicators of construct ξj. If all the indicators are standardized
(i.e., have a mean of 0 and a variance of 1), Eq. 1 simplifies to

AVEξ j ¼
1

K j
∑
K j

k¼1
λ2jk : ð2Þ

The AVE thus equals the average squared standardized
loading, and it is equivalent to the mean value of the indicator
reliabilities. Now, let rij be the correlation coefficient between
the construct scores of constructs ξi and ξj The squared inter-
construct correlation rij

2 indicates the proportion of the vari-
ance that constructs ξi and ξj share. The Fornell-Larcker crite-
rion then indicates that discriminant validity is established if
the following condition holds:

AVEξ j > maxr2i j ∀i≠ j: ð3Þ

Since it is common to report inter-construct correlations in
publications, a different notation can be found in most reports
on discriminant validity:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AVEξ j

q
> maxjri jj ∀i≠ j: ð4Þ

From a conceptual perspective, the application of the
Fornell-Larcker criterion is not without limitations. For exam-
ple, it is well known that variance-based SEMmethods tend to
overestimate indicator loadings (e.g., Hui and Wold 1982;
Lohmöller 1989). The origin of this characteristic lies in the
methods’ treatment of constructs. Variance-based SEM
methods, such as PLS or GSCA, use composites of indicator
variables as substitutes for the underlying constructs (Henseler
et al. 2014). The loading of each indicator on the composite
represents a relationship between the indicator and the com-
posite of which the indicator is part. As a result, the degree of
overlap between each indicator and composite will be high,
yielding inflated loading estimates, especially if the number of
indicators per construct (composite) is small (Aguirre-Urreta
et al. 2013).2 Furthermore, each indicator’s error variance is
also included in the composite (e.g., Bollen and Lennox
1991), which increases the validity gap between the construct
and the composite (Rigdon 2014) and, ultimately, compounds
the inflation in the loading estimates. Similar to the loadings,
variance-based SEM methods generally underestimate struc-
tural model relationships (e.g., Reinartz et al. 2009;
Marcoulides, Chin, and Saunders 2012). While these devia-
tions are usually relatively small (i.e., less than 0.05; Reinartz

Table 1 Recommendations for
establishing discriminant validity
in prior research

Other prominent introductory
texts on PLS (e.g., Falk andMiller
1992; Haenlein and Kaplan 2004;
Lohmöller 1989; Tenenhaus et al.
2005; Wold 1982) do not offer
recommendations for assessing
discriminant validity

Reference Recommendation

Fornell-Larcker criterion Cross-loadings

Barclay, Higgins, and Thompson (1995) ✓ ✓

Chin (1998, 2010) ✓ ✓

Fornell and Cha (1994) ✓

Gefen and Straub (2005) ✓ ✓

Gefen, Straub, and Boudreau (2000) ✓ ✓

Götz, Liehr-Gobbers, and Krafft (2010) ✓

Hair et al. (2011) ✓ ✓

Hair et al. (2012a) ✓ ✓

Hair et al. (2012b) ✓ ✓

Hair et al. (2014) ✓ ✓

Henseler et al. (2009) ✓ ✓

Hulland (1999) ✓

Lee et al. (2011) ✓ ✓

Peng and Lai (2012) ✓

Ringle et al. (2012) ✓ ✓

Roldán and Sánchez-Franco (2012) ✓ ✓

Sosik et al. (2009) ✓

2 Nunnally (1978) offers an extreme example with five mutually uncor-
related indicators, implying zero loadings if all were measures of a
construct. However, each indicator’s correlation (i.e., loading) with an
unweighted composite of all five items is 0.45.
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et al. 2009), the interplay between inflated AVE values and
deflated structural model relationships in the assessment of
discriminant validity has not been systematically examined.
Furthermore, the Fornell-Larcker criterion does not rely on
inference statistics and, thus, no procedure for statistically
testing discriminant validity has been developed to date.

Assessing cross-loadings

Another popular approach for establishing discriminant validity is
the assessment of cross-loadings, which is also called “item-level
discriminant validity.” According to Gefen and Straub (2005, p.
92), “discriminant validity is shownwhen eachmeasurement item
correlates weakly with all other constructs except for the one to
which it is theoretically associated.” This approach can be traced
back to exploratory factor analysis, where researchers routinely
examine indicator loading patterns to identify indicators that have
high loadings on the same factor and those that load highly on
multiple factors (i.e., double-loaders; Mulaik 2009).

In the case of PLS, Barclay et al. (1995), as well as Chin
(1998), were the first to propose that each indicator loading
should be greater than all of its cross-loadings.3 Otherwise, “the
measure in question is unable to discriminate as to whether it
belongs to the construct it was intended tomeasure or to another
(i.e., discriminant validity problem)” (Chin 2010, p. 671). The
upper part a) of Fig. 1 illustrates this cross-loadings approach.

However, there has been no reflection on this approach’s
usefulness in variance-based SEM. Apart from the norm that
an item should be highly correlated with its own construct, but
have low correlations with other constructs in order to estab-
lish discriminant validity at the item level, no additional
theoretical arguments or empirical evidence of this approach’s
performance have been presented. In contrast, research on
covariance-based SEM has critically reflected on the
approach’s usefulness for discriminant validity assessment.
For example, Bollen (1989) shows that high inter-construct
correlations can cause a pronounced spurious correlation be-
tween a theoretically unrelated indicator and construct. The
paucity of research on the efficacy of cross-loadings in
variance-based SEM is problematic, because the methods tend
to overestimate indicator loadings due to their reliance on
composites. At the same time, the introduction of composites
as substitutes for latent variables leaves cross-loadings largely
unaffected. The majority of variance-based SEM methods are
limited information approaches, estimating model equations
separately, so that the inflated loadings are only imperfectly
introduced in the cross-loadings. Therefore, the very nature of

algorithms, such as PLS, favors the support of discriminant
validity as described by Barclay et al. (1995) and Chin (1998).

Another major drawback of the aforementioned approach
is that it is a criterion, but not a statistical test. However, it is
also possible to conduct a statistical test of other constructs’
influence on an indicator using partial cross-loadings.4 The
partial cross-loadings determine the effect of a construct on an
indicator other than the one the indicator is intended to mea-
sure after controlling for the influence of the construct that the
indicator should measure. Once the influence of the actual
construct has been partialed out, the residual error variance
should be pure random error according to the reflective mea-
surement model:

ε jk ¼ x jk−λ jkξ j; ε jk⊥ξi ∀i: ð5Þ

If εjk is explained by another variable (i.e., the correlation
between the error term of an indicator and another construct is
significant), we can no longer maintain the assumption that εjk
is pure random error but must acknowledge that part of the
measurement error is systematic error. If this systematic error
is due to another construct ξi, we must conclude that the
indicator does not indiscriminately measure its focal construct
ξj, but also the other construct ξi, which implies a lack of
discriminant validity. The lower part b) of Fig. 1 illustrates the
working principle of the significance test of partial cross-
loadings.

While this approach has not been applied in the context of
variance-based SEM, its use is common in covariance-based
SEM, where it is typically applied in the form of modification
indices. Substantial modification indices point analysts to the
correlations between indicator error terms and other con-
structs, which are nothing but partial correlations.

An initial assessment of traditional discriminant validity
methods

Although the Fornell-Larcker criterion was established more
than 30 years ago, there is virtually no systematic examination
of its efficacy for assessing discriminant validity. Rönkkö and
Evermann (2013) were the first to point out the Fornell-
Larcker criterion’s potential problems. Their simulation study,
which originally evaluated the performance of model valida-
tion indices in PLS, included a population model with two
identical constructs. Despite the lack of discriminant validity,
the Fornell-Larcker criterion indicated this problem in only 54
of the 500 cases (10.80%). This result implies that, in the vast
majority of situations that lack discriminant validity, empirical

3 Chin (2010) suggests examining the squared loadings and cross-
loadings instead of the loadings and cross-loadings. He argues that, for
instance, compared to a cross-loading of 0.70, a standardized loading of
0.80 may raise concerns, whereas the comparison of a shared variance of
0.64 with a shared variance of 0.49 puts matters into perspective. 4 We thank an anonymous reviewer for proposing this approach.
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researchers would mistakenly be led to believe that discrimi-
nant validity has been established. Unfortunately, Rönkkö and
Evermann’s (2013) study does not permit drawing definite
conclusions about extant approaches’ efficacy for assessing
discriminant validity for the following reasons: First, their
calculation of the AVE—a major ingredient of the Fornell-
Larcker criterion—was inaccurate, because they determined
one overall AVE value instead of two separate AVE values;
that is, one for each construct (Henseler et al. 2014).5 Second,
Rönkkö and Evermann (2013) did not examine the perfor-
mance of the cross-loadings assessment.

In order to shed light on the Fornell-Larcker criterion’s
efficacy, as well as on that of the cross-loadings, we conducted
a small simulation study. We randomly created 10,000
datasets with 100 observations, each according to the one-
factor population model shown in Fig. 2, which Rönkkö and
Evermann (2013) and Henseler et al. (2014) also used. The
indicators have standardized loadings of 0.60, 0.70, and 0.80,
analogous to the loading patterns employed in previous sim-
ulation studies on variance-based SEM (e.g., Goodhue et al.
2012; Henseler and Sarstedt 2013; Reinartz et al. 2009).

To assess the performance of traditional methods regarding
detecting (a lack of) discriminant validity, we split the

construct in Fig. 2 into two separate constructs, which results
in a two-factor model as depicted in Fig. 3. We then used the
artificially generated datasets from the population model in
Fig. 2 to estimate the model shown in Fig. 3 by means of the
variance-based SEM techniques GSCA and PLS. We also
benchmarked their results against those of regressions with
summed scales, which is an alternative method for estimating
relationships between composites (Goodhue et al. 2012). No
matter which technique is used to estimate the model param-
eters, the Fornell-Larcker criterion and the assessment of the
cross-loadings should reveal that the one-factor model rather
than the two-factor model is preferable.

Table 2 shows the results of this initial study. The reported
percentage values denote the approaches’ sensitivity, indicating
their ability to identify a lack of discriminant validity (Macmillan
and Creelman 2004). For example, when using GSCA for
model estimation, the Fornell-Larcker criterion points to a lack
of discriminant validity in only 10.66% of the simulation runs.

The results of this study render the following main find-
ings: First, we can generally confirm Rönkkö and Evermann’s
(2013) report on the Fornell-Larcker criterion’s extremely
poor performance in PLS, even though our study’s concrete
sensitivity value is somewhat higher (14.59% instead of
10.80%).6 In addition, we find that the sensitivity of the

5 We thankMikko Rönkkö and Joerg Evermann for providing us with the
code of their simulation study (Rönkkö and Evermann 2013), which
helped us localize this error in their analysis.

6 The difference between these results could be due to calculation errors
by Rönkkö and Evermann (2013), as revealed by Henseler et al. (2014).

b)

a)Fig. 1 Using the cross-loadings
to assess discriminant validity
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cross-loadings regarding assessing discriminant validity is
8.78% in respect of GSCA and, essentially, zero in respect
of PLS and regression with summed scales. These results
allow us to conclude that both the Fornell-Larcker criterion
and the assessment of the cross-loadings are insufficiently
sensitive to detect discriminant validity problems. As we will
show later in the paper, this finding can be generalized to
alternative model settings with different loading patterns,
inter-construct correlations, and sample sizes. Second, our
results are not due to a certain method’s characteristics, be-
cause we used different model estimation techniques.
Although the results differ slightly across the three methods
(Table 2), we find that the general pattern remains stable. In
conclusion, the Fornell-Larcker criterion and the assessment
of the cross-loadings fail to reliably uncover discriminant
validity problems in variance-based SEM.

The heterotrait-monotrait ratio of the correlations
approach to assess discriminant validity

Traditional approaches’ unacceptably low sensitivity regard-
ing assessing discriminant validity calls for an alternative
criterion. In the following, we derive such a criterion from
the classical multitrait-multimethod (MTMM) matrix
(Campbell and Fiske 1959), which permits a systematic dis-
criminant validity assessment to establish construct validity.

Surprisingly, the MTMM matrix approach has hardly been
applied in variance-based SEM (for a notable exception see
Loch et al. 2003).

The application of the MTMMmatrix approach requires at
least two constructs (“multiple traits”) originating from the
same respondents. The MTMMmatrix is a particular arrange-
ment of all the construct measures’ correlations. Campbell and
Fiske (1959) distinguish between four types of correlations,
two of which are relevant for discriminant validity assessment.
First, the monotrait-heteromethod correlations quantify the
relationships between two measurements of the same con-
struct by means of different methods (i.e., items). Second,
the heterotrait-heteromethod correlations quantify the rela-
tionships between two measurements of different constructs
bymeans of different methods (i.e., items). Figure 4 visualizes
the structuring of these correlations types by means of a small
example (Fig. 3) with two constructs (ξ1 and ξ2) measured
with three items each (x1 to x3 and x4 to x6). Since the MTMM
matrix is symmetric, only the lower triangle needs to be
considered. The monotrait-heteromethod correlations subpart
includes the correlations of indicators that belong to the same
construct. In our example, these are the correlations between
the indicators x1 to x3 and between the indicators x4 to x6, as
the two triangles in Fig. 4 indicate. The heterotrait-
heteromethod correlations subpart includes the correlations
between the different constructs’ indicators. In the example
in Fig. 4, the heterotrait-heteromethod correlations subpart

Fig. 2 Population model
(one-factor model)

Fig. 3 Estimated model
(two-factor model)
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consists of the nine correlations between the indicators of the
construct ξ1 (i.e., x1 to x3) and those of the construct ξ2 (i.e., x4
to x6), which are indicated by a rectangle.

The MTMMmatrix analysis provides evidence of discrim-
inant validity when the monotrait-heteromethod correlations
are larger than the heterotrait-heteromethod correlations
(Campbell and Fiske 1959; John and Benet-Martínez 2000).
That is, the relationships of the indicators within the same
construct are stronger than those of the indicators across
constructs measuring different phenomena, which implies that
a construct is empirically unique and a phenomenon of interest
that other measures in the model do not capture.

While this rule is theoretically sound, it is problematic in
empirical research practice. First, there is a large potential for
ambiguities. What if the order is not as expected in only a few
incidents? It cannot be ruled out that some heterotrait-
heteromethod correlations exceed monotrait-heteromethod

correlations, although the two constructs do in fact differ
(Schmitt and Stults 1986). Second, one-by-one comparisons
of values in large correlation matrices can quickly become
tedious, which may be one reason for the MTMM matrix
analysis not being a standard approach to assess discriminant
validity in variance-based SEM.

We suggest assessing the heterotrait-monotrait ratio
(HTMT) of the correlations, which is the average of the
heterotrait-heteromethod correlations (i.e., the correlations of
indicators across constructs measuring different phenomena),
relative to the average of the monotrait-heteromethod correla-
tions (i.e., the correlations of indicators within the same con-
struct). Since there are two monotrait-heteromethod
submatrices, we take the geometric mean of their average
correlations. Consequently, the HTMT of the constructs
ξi and ξj with, respectively, Ki and Kj indicators can be
formulated as follows:

HTMTij ¼ 1

KiK j

X
g¼1

KiX
h¼1

K j

rig;jh|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
average

heterotrait−
heteromethod

� 2

Ki Ki−1ð Þ ⋅
XKi−1

g¼1

X
h¼gþ1

Ki

rig;ih⋅
2

K j K j−1
� � ⋅XK j−1

g¼1

X
h¼gþ1

K j

rjg;jh

 !1
2

:

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
geometric mean of the average monotrait−heteromethod

correlation of construct ξi and the average
monotrait−heteromethod correlation of construct ξ j

ð6Þ

In essence, as suggested by Nunnally (1978) and
Netemeyer et al. (2003), the HTMT approach is an estimate
of the correlation between the constructs ξi and ξj (see the
Appendix for the derivation), which parallels the disattenuated
construct score correlation. Technically, the HTMT provides
two advantages over the disattenuated construct score corre-
lation: The HTMT does not require a factor analysis to obtain
factor loadings, nor does it require the calculation of construct
scores. This allows for determining the HTMTeven if the raw
data is not available, but the correlation matrix is.
Furthermore, HTMT builds on the available measures and
data and—contrary to the standard MTMM approach—does
not require simultaneous surveying of the same theoretical
concept with alternative measurement approaches. Therefore,
this approach does not suffer from the standard MTMM
approach’s well-known issues regarding data requirements
and parallel measures (Schmitt 1978; Schmitt and Stults
1986).

Because the HTMT is an estimate of the correlation be-
tween the constructs ξi and ξj, its interpretation is straightfor-
ward: if the indicators of two constructs ξi and ξj exhibit an
HTMT value that is clearly smaller than one, the true correla-
tion between the two constructs is most likely different from
one, and they should differ. There are two ways of using the
HTMT to assess discriminant validity: (1) as a criterion or (2)
as a statistical test. First, using the HTMT as a criterion
involves comparing it to a predefined threshold. If the value
of the HTMT is higher than this threshold, one can conclude
that there is a lack of discriminant validity. The exact threshold
level of the HTMT is debatable; after all, “when is a correla-
tion close to one”? Some authors suggest a threshold of 0.85
(Clark andWatson 1995; Kline 2011), whereas others propose
a value of 0.90 (Gold et al. 2001; Teo et al. 2008). In the
remainder of this paper, we use the notations HTMT.85 and
HTMT.90 in order distinguish between these two absolute
thresholds for the HTMT. Second, the HTMT can serve as

Table 2 Sensitivity of traditional
approaches to assessing discrimi-
nant validity

Approach GSCA PLS Regression with summed scales

Fornell-Larcker criterion 10.66 % 14.59 % 7.76 %

Cross-loadings 8.78 % 0.00 % 0.03 %
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the basis of a statistical discriminant validity test (which we
will refer to as HTMTinference). The bootstrapping procedure
allows for constructing confidence intervals for the HTMT, as
defined in Eq. 6, in order to test the null hypothesis
(H0: HTMT ≥ 1) against the alternative hypothesis (H1:
HTMT < 1).7 A confidence interval containing the value one
(i.e., H0 holds) indicates a lack of discriminant validity.
Conversely, if the value one falls outside the interval’s range,
this suggests that the two constructs are empirically distinct.
As Shaffer (1995, p. 575) notes, “[t]esting with confidence
intervals has the advantage that they give more information by
indicating the direction and something about the magnitude of
the difference or, if the hypothesis is not rejected, the power of
the procedure can be gauged by the width of the interval.”

In real research situations with multiple constructs, the
HTMTinference analysis involves the multiple testing prob-
lem (Miller 1981). Thus, researchers must control for an
inflation of Type I errors resulting from applying multiple
tests to pairs of constructs. That is, discriminant validity
assessment using HTMTinference needs to adjust the upper
and lower bounds of the confidence interval in each test to
maintain the familywise error rate at a predefined α level
(Anderson and Gerbing 1988). We use the Bonferroni
adjustment to assure that the familywise error rate of
HTMTinference does not exceed the predefined α level in
all the (J–1) J/2 (J = number of latent variables) tests. The
Bonferroni approach does not rely on any distributional
assumptions about the data, making it particularly suitable
in the context of variance-based SEM techniques such as
PLS (Gudergan et al. 2008). Furthermore, Bonferroni is a
rather conservative approach to maintain the familywise
error rate at a predefined level (Hochberg 1988; Holm
1979). Its implementation therefore also renders
HTMTinference more conservative in terms of its sensitivity

assessment (compared to other multiple testing ap-
proaches), which seems warranted given the Fornell-
Larcker criterion and the cross-loadings’ poor perfor-
mance in the previous simulation study.

Comparing the approaches by means of a computational
experiment

Objectives

To examine the different approaches’ efficacy for estab-
lishing discriminant validity, we conduct a second Monte
Carlo simulation study. The aims of this study are (1) to
shed further light on the performance of the Fornell-
Larcker criterion and the cross-loadings in alternative
model settings and (2) to evaluate the newly proposed
HTMT criteria’s efficacy for assessing discriminant va-
lidity vis-à-vis traditional approaches. We measure the
approaches’ performance by means of their sensitivity
and specificity (Macmillan and Creelman 2004). The
sensitivity, as introduced before, quantifies each
approach’s ability to detect a lack of discriminant valid-
ity if two constructs are identical. The specificity indi-
cates how frequently an approach will signal discrimi-
nant validity if the two constructs are empirically dis-
tinct. Both sensitivity and specificity are desirable char-
acteristics and, optimally, an approach should yield high
values in both measures. In real research situations, how-
ever, it is virtually impossible to achieve perfect sensi-
tivity and perfect specificity simultaneously due to, for
example, measurement or sampling errors. Instead, ap-
proaches with a higher sensitivity will usually have a
lower specificity and vice versa. Researchers thus face a
trade-off between sensitivity and specificity, and need to
find a find a balance between the two (Macmillan and
Creelman 2004).

7 Strictly speaking, one should assess the absolute value of the HTMT,
because a correlation of −1 implies a lack of discriminant validity, too.

Fig. 4 An example of a reduced
MTMM matrix
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Experimental design and analysis

The design of the Monte Carlo simulation was motivated by
the objective to define models that (1) allow for the assess-
ment of approaches’ sensitivity and specificity with regard to
detecting a lack of discriminant validity and (2) resemble set-
ups commonly encountered in applied research (Paxton et al.
2001). In line with Rönkkö and Evermann (2013), as well as
Henseler et al. (2014), the simulation study’s population mod-
el builds on a two-construct model, as shown in Fig. 3.
Drawing on the results of prior PLS reviews (e.g., Hair et al.
2012a; Ringle et al. 2012), we vary the indicator loading
patterns to allow for (1) different levels of the AVE and (2)
varying degrees of heterogeneity between the loadings.
Specifically, we consider four loading patterns for each of
the two constructs:

1. A homogenous pattern of loadings with higher AVE:

λ11 ¼ λ12 ¼ λ13 ¼ λ21 ¼ λ22 ¼ λ23 ¼ :90;

2. A homogenous pattern of loadings with lower AVE:

λ11 ¼ λ12 ¼ λ13 ¼ λ21 ¼ λ22 ¼ λ23 ¼ :70;

3. A more heterogeneous pattern of loadings with lower
AVE:

λ11 ¼ λ21 ¼ :60;λ12 ¼ λ22 ¼ :70;λ13 ¼ λ23 ¼ :80;

4. A more heterogeneous pattern of loadings with lower
AVE:

λ11 ¼ λ21 ¼ :50;λ12 ¼ λ22 ¼ :70;λ13 ¼ λ23 ¼ :90:

Next, we examine how different sample sizes—as routine-
ly assumed in simulation studies in SEM in general (Paxton
et al. 2001) and in variance-based SEM in particular (e.g.,
Reinartz et al. 2009; Vilares and Coelho 2013)—would influ-
ence the approaches’ efficacy. We consider sample sizes of
100, 250, 500, and 1,000.

Finally, in order to examine the sensitivity and
specificity of the approaches, we vary the inter-
construct correlations. First, to examine their sensitivi-
ty, we consider a situation in which the two constructs

a situation in which an analyst mistakenly models two
constructs, although they actually form a single con-
struct. Optimally, all the approaches should indicate a
lack of discriminant validity under this condition.

In line with Vilares et al. (2010), as well as Vilares
and Coelho (2013), we generate 1,000 datasets for each
combination of design factors. Hence, the simulation
study draws on a total number of 816,000 simulation
runs: 4 levels of loading patterns times 4 levels of
sample sizes times 51 levels of inter-construct correla-
tions times 1,000 datasets per condition. In each simu-
lation run, we apply the following approaches to assess
the discriminant validity:

1. The Fornell-Larcker criterion: Is the squared correlation
between the two constructs greater than any of the two
constructs’ AVE?

2. The cross-loadings: Does any indicator correlate more
strongly with the other constructs than with its own
construct?

3. The partial cross-loadings: Is an indicator significantly
explained by a construct that it is not intended to
measure when the actual construct’s influence is
partialed out?

4. The HTMT.85 criterion: Is the HTMT criterion greater
than 0.85?

5. The HTMT.90 criterion: Is the HTMT criterion greater
than 0.90?

6. The statistical HTMTinference test: Does the 90% normal
bootstrap confidence interval of the HTMT criterion with
a Bonferroni adjustment include the value one?8

In the simulation study, we focus on PLS, which is
regarded as the “most fully developed and general system”
(McDonald 1996, p. 240) of the variance-based SEM
techniques. Furthermore, the initial simulation study
showed that PLS is the variance-based SEM technique
with the highest sensitivity (i.e., 14.59% in respect of
the Fornell-Larcker criterion; Table 2). All calculations
were carried out with R 3.1.0 (R Core Team 2014) and
we applied PLS as implemented in the semPLS package
(Monecke and Leisch 2012).

8 Since HTMTinference relies on one-tailed tests, we use the 90% bootstrap
confidence interval in order to warrant an error probability of five percent.
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are perfectly correlated (φ=1.0). This condition mirrors

Second, to examine the approaches’ specificity, we de-
crease the inter-construct correlations in 50 steps of 0.02
from φ=1.00 to φ=0.00, covering the full range of
absolute correlations. The smaller the true inter-
construct correlation φ, the less an approach is expected
to indicate a lack of discriminant validity; that is, we
anticipate that the approaches’ specificity will increase
with lower levels of φ.



Sensitivity results

With respect to each sensitivity analysis situation, we report
each approach’s relative frequency to indicate the lack of
discriminant validity if the true correlation between the con-
structs is equal to one (Table 3). This frequency should be
100%, or at least very close to this percentage.

Extending our previous findings, the results clearly show
that traditional approaches used to assess discriminant validity
perform very poorly; this is also true in alternative model
settings with different loading patterns and sample sizes. The
most commonly used approach, the Fornell-Larcker criterion,
fails to identify discriminant validity issues in the vast major-
ity of cases (Table 3). It only detects a lack of discriminant
validity in more than 50% of simulation runs in situations with
very heterogeneous loading patterns (i.e., 0.50 /0.70 /0.90)
and sample sizes of 500 or less. With respect to more homo-
geneous loading patterns, the Fornell-Larcker criterion yields
much lower sensitivity rates, particularly when the AVE is
low.

The analysis of the cross-loadings fails to identify any
discriminant validity problems, as this approach yields sensi-
tivity values of 0% across all the factor level combinations
(Table 3). Hence, the comparison of cross-loadings does not
provide a basis for identifying discriminant validity issues.
However, the picture is somewhat different regarding the
partial cross-loadings. The sensitivity remains unacceptably

low in respect of homogeneous loadings patterns, no matter
what the sample size is. However, the sensitivity improves
substantially in respect of heterogeneous loadings patterns.
The sample size clearly matters for the partial cross-loadings
approach. The larger the sample size, the more sensitive the
partial cross-loadings are regarding detecting a lack of dis-
criminant validity.

In contrast to the other approaches, the two absolute
HTMT.85 and HTMT.90 criteria, as well as HTMTinference,
yield sensitivity levels of 95% or higher under all simulation
conditions (Table 3). Because of its lower threshold, HTMT.85
slightly outperforms the other two approaches with an average
sensitivity rate of 99.90% compared to the 99.45% of
HTMT.90 and the 97.01% of HTMTinference. In general, all
three HTMT approaches detect discriminant validity issues
reliably.

Specificity results

The specificity results are depicted in Fig. 5 (for homogeneous
loading patterns) and Fig. 6 (for heterogeneous loadings pat-
terns). The graphs visualize the frequency with which each
approach indicates that the two constructs are distinct regard-
ing varying levels of inter-construct correlations, loading pat-
terns, and sample sizes. The discussion focuses on the three
HTMT-based approaches, as the sensitivity analysis has al-
ready rendered the Fornell-Larcker criterion and the

Table 3 Results: Sensitivity of approaches to assess discriminant validity

Loading pattern Sample size Approach to assess discriminant validity

Fornell-Larcker Cross-loadings Partial cross-loadings HTMT.85 HTMT.90 HTMTinference

0.90/0.90/0.90 100 42.10 % 0.00 % 16.70 % 100.00 % 100.00 % 96.30 %

250 27.30 % 0.00 % 15.30 % 100.00 % 100.00 % 96.00 %

500 15.40 % 0.00 % 17.70 % 100.00 % 100.00 % 95.50 %

1,000 4.80 % 0.00 % 19.40 % 100.00 % 100.00 % 96.00 %

0.70/0.70/0.70 100 6.90 % 0.00 % 5.10 % 99.10 % 95.90 % 96.00 %

250 0.30 % 0.00 % 5.10 % 100.00 % 99.90 % 95.70 %

500 0.00 % 0.00 % 5.60 % 100.00 % 100.00 % 94.90 %

1,000 0.00 % 0.00 % 6.40 % 100.00 % 100.00 % 95.50 %

0.60/0.70/0.80 100 13.70 % 0.00 % 39.60 % 99.40 % 96.90 % 96.60 %

250 2.30 % 0.00 % 82.80 % 100.00 % 100.00 % 96.80 %

500 0.20 % 0.00 % 99.50 % 100.00 % 100.00 % 97.10 %

1,000 0.00 % 0.00 % 100.00 % 100.00 % 100.00 % 98.40 %

0.50/0.70/0.90 100 64.60 % 0.00 % 99.50 % 99.90 % 98.50 % 98.20 %

250 59.50 % 0.00 % 100.00 % 100.00 % 100.00 % 99.40 %

500 53.90 % 0.00 % 100.00 % 100.00 % 100.00 % 99.80 %

1,000 42.10 % 0.00 % 100.00 % 100.00 % 100.00 % 100.00 %

Average 20.82 % 0.00 % 50.79 % 99.90 % 99.45 % 97.01 %

The correlation between the two constructs is 1.0; consequently, one expects discriminant validity problems to be detected with a frequency close to
100% regarding all the criteria in all the analyzed constellations
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Fig. 5 Specificity of approaches to assess discriminant validity in homogeneous loading patterns
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Fig. 6 Specificity of approaches to assess discriminant validity in heterogeneous loading patterns
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assessment of the (partial) cross-loadings ineffective (we nev-
ertheless plotted their specificity rates for completeness sake).

All HTMTapproaches show consistent patterns of decreas-
ing specificity rates at higher levels of inter-construct correla-
tions. As the correlations increase, the constructs’ distinctive-
ness decreases, making it less likely that the approaches will
indicate discriminant validity. Furthermore, the three ap-
proaches show similar results patterns for different loadings,
sample sizes, and inter-construct correlations, albeit at differ-
ent levels. For example, ceteris paribus, when loading patterns
are heterogeneous, specificity rates decrease at lower levels of
inter-construct correlations compared to conditions with ho-
mogeneous loading patterns. A more detailed analysis of the
results shows that all three HTMTapproaches have specificity
rates of well above 50% with regard to inter-construct corre-
lations of 0.80 or less, regardless of the loading patterns and
sample sizes. At inter-construct correlations of 0.70, the spec-
ificity rates are close to 100% in all instances. Thus, neither
approach mistakenly indicates discriminant validity issues at
levels of inter-construct correlations, which most researchers
are likely to consider indicative of discriminant validity.

Comparing the approaches shows that HTMT.85 always
exhibits higher or equal sensitivity, but lower or equal speci-
ficity values compared to HTMT.90. That is, HTMT.85 is more
likely to indicate a lack of discriminant validity, an expected
finding considering the criterion’s lower threshold value. The
difference between these two approaches becomes more pro-
nounced with respect to larger sample sizes and stronger
loadings, but it remains largely unaffected by the degree of
heterogeneity between the loadings.

Compared to the two threshold-based HTMT approaches,
HTMTinference generally yields much higher specificity values,
thus constituting a rather liberal approach to assessing dis-
criminant validity, as it is more likely to indicate two con-
structs as distinct, even at high levels of inter-construct corre-
lations. This finding holds especially in conditions where
loadings are homogeneous and high (Fig. 5). Here,
HTMTinference yields specificity rates of 80% or higher in
terms of inter-construct correlations as high as 0.95, which
many researchers are likely to view as indicative of a lack of
discriminant validity. Exceptions occur in sample sizes of 100
and with lower AVE values. Here, HTMT.90 achieves higher
sensitivity rates compared to HTMTinference. However, the
differences in specificity between the two criteria are marginal
in these settings.

Empirical example

To illustrate the approaches, we draw on the American
Customer Satisfaction Index (ACSI) model (Anderson and
Fornell 2000; Fornell et al. 1996), using empirical data from

the first quarter of 1999 with N=10,417 observations after
excluding cases with missing data from the indicators used for
model estimation (case wise deletion). In line with prior
studies (Ringle et al. 2010, 2014) that used this dataset in their
ACSI model examples, we rely on a modified version of the
ACSI model without the constructs complaints (dummy-
coded indicator) and loyalty (more than 80% of the cases for
this construct measurement are missing). Figure 7 shows the
reduced ACSI model and the PLS results.

The reduced ACSI model consists of the four reflectively
measured constructs: customer satisfaction (ACSI), customer
expectations (CUEX), perceived quality (PERQ), and per-
ceived value (PERV). The evaluation of the PLS results meets
the relevant criteria (Chin 1998, 2010; Götz et al. 2010; Hair
et al. 2012a), which Ringle et al. (2010), using this example,
presented in detail. According to the Fornell-Larcker criterion
and the cross-loadings (Table 4), the constructs’ discriminant
validity has been established: (1) the square root of each
construct’s AVE is higher than its correlation with another
construct, and (2) each item loads highest on its associated
construct. Table 4 also lists the significant (p<0.05) partial
cross-loadings. Two thirds of them are significant. This rela-
tively high percentage is not surprising, considering that even
marginal correlations (e.g., an absolute value of 0.028) be-
come significant as a result of the high sample size. Hence,
and in line with the approach’s sensitivity results (Table 3), the
multitude of significant partial cross-loadings seems to sug-
gest serious problems with respect to discriminant validity.

Next, we compute the HTMT criteria for each pair of
constructs on the basis of the item correlations (Table 5) as
defined in Eq. 6.9 The computation yields values between
0.53 in respect of HTMT(CUEX,PERV) and 0.95 in respect
of HTMT(ACSI,PERQ) (Table 6). Comparing these results
with the threshold values as defined in HTMT.85 gives rise to
concern, because two of the six comparisons (ACSI and
PERQ; ACSI and PERV) violate the 0.85 threshold.
However, in the light of the conceptual similarity of the
ACSI model’s constructs, the use of a more liberal criterion
for specificity seems warranted. Nevertheless, even when
using HTMT.90 as the standard, one comparison (ACSI and
PERQ) violates this criterion. Only the use of HTMTinference
suggests that discriminant validity has been established.

This empirical example of the ACSI model and the use of
original data illustrate a situation in which the classical criteria
do not indicate any discriminant validity issues, whereas the
two more conservative HTMT criteria do. While it is beyond
this study’s scope to discuss the implications of the results for
model design, they give rise to concern regarding the empirical
distinctiveness of the ACSI and PERQ constructs.

9 An Excel sheet illustrating the computation of the HTMT values can be
downloaded from http://www.pls-sem.com/jams/htmt_acsi.xlsx.
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Summary and discussion

Key findings and recommendations

Our results clearly show that the two standard approaches to
assessing the discriminant validity in variance-based SEM—
the Fornell-Larcker criterion and the assessment of cross-
loadings—have an unacceptably low sensitivity, which means
that they are largely unable to detect a lack of discriminant
validity. In particular, the assessment of the cross-loadings
completely fails to detect discriminant validity issues.
Similarly, the assessment of partial cross-loadings—an ap-
proach which has not been used in variance-based SEM—
proves inefficient in many settings commonly encountered in
applied research. More precisely, the criterion only works well
in situations with heterogeneous loading patterns and high
sample sizes.

As a solution to this critical issue, we present a new set of
criteria for discriminant validity assessment in variance-based
SEM. The new HTMTcriteria, which are based on a compar-
ison of the heterotrait-heteromethod correlations and the
monotrait-heteromethod correlations, identify a lack of dis-
criminant validity effectively, as evidenced by their high sen-
sitivity rates.

Themain difference between the HTMTcriteria lies in their
specificity. Of the three approaches, HTMT.85 is the most
conservative criterion, as it achieves the lowest specificity
rates of all the simulation conditions. This means that
HTMT.85 can pint to discriminant validity problems in re-
search situations in which HTMT.90 and HTMTinference indi-
cate that discriminant validity has been established. In con-
trast, HTMTinference is the most liberal of the three newly
proposed approaches. Even if two constructs are highly, but
not perfectly, correlated with values close to 1.0, the criterion
is unlikely to indicate a lack of discriminant validity, particu-
larly when (1) the loadings are homogeneous and high or (2)
the sample size is large. Owing to its higher threshold,
HTMT.90 always has higher specificity rates than HTMT.85.

PERQ
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qual3

PERV
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exp2
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Fig. 7 Reduced ACSI model and
PLS results

Table 4 Fornell-Larcker criterion results and cross loadings

ACSI CUEX PERQ PERV

Fornell-Larcker criterion

ACSI 0.899

CUEX 0.495 0.781

PERQ 0.830 0.556 0.860

PERV 0.771 0.417 0.660 0.942

Cross-loadings

acsi1 0.926 0.489 0.826 0.757

acsi2 0.903 0.398 0.729 0.676

acsi3 0.867 0.447 0.672 0.638

exp1 0.430 0.845 0.471 0.372

exp2 0.429 0.848 0.474 0.356

exp3 0.283 0.629 0.346 0.229

qual1 0.802 0.561 0.916 0.640

qual2 0.780 0.486 0.919 0.619

qual3 0.515 0.364 0.731 0.408

value1 0.751 0.418 0.663 0.948

value2 0.699 0.364 0.575 0.935

Significant (p<0.05) partial cross-loadings

acsi1 0.702 n.s. 0.178 0.098

acsi2 0.996 −0.057 −0.037 −0.044
acsi3 1.037 0.060 −0.176 −0.071
exp1 n.s. 0.841 −0.029 0.029

exp2 0.028 0.846 n.s. n.s.

exp3 −0.063 0.638 0.064 −0.031
qual1 0.122 0.068 0.770 n.s.

qual2 0.058 −0.040 0.891 n.s.

qual3 −0.277 −0.047 0.999 n.s.

value1 n.s. n.s. 0.067 0.906

value2 n.s. n.s. −0.074 0.982

The results marked in bold indicate where the highest value is expected;
n.s., not significant
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Compared to HTMTinference, the HTMT.90 criterion yields
much lower specificity rates in the vast majority of conditions.
We find that none of the HTMTcriteria indicates discriminant
validity issues for inter-construct correlations of 0.70 or less.
This outcome of our specificity analysis is important, as it
shows that neither approach points to discriminant validity
problems at comparably low levels of inter-construct
correlations.

Based on our findings, we strongly recommend drawing on
the HTMT criteria for discriminant validity assessment in
variance-based SEM. The actual choice of criterion depends
on the model set-up and on how conservative the researcher is
in his or her assessment of discriminant validity. Take, for
example, the technology acceptance model and its variations
(Davis 1989; Venkatesh et al. 2003), which include the con-
structs intention to use and the actual use. Although these
constructs are conceptually different, they may be difficult to
distinguish empirically in all research settings. Therefore, the
choice of a more liberal HTMTcriterion in terms of specificity
(i.e., HTMT.90 or HTMTinference, depending on the sample
size) seems warranted. Conversely, if the strictest standards
are followed, this requires HTMT.85 to assess discriminant
validity.

Guidelines for treating discriminant validity problems

To handle discriminant validity problems, researchers may
follow different routes, which we illustrate in Fig. 8. The
first approach retains the constructs that cause discrimi-
nant validity problems in the model and aims at increasing
the average monotrait-heteromethod correlations and/or
decreasing the average heteromethod-heterotrait correla-
tions of the constructs measures. When researchers seek
to decrease the HTMT by increasing a construct’s average
monotrait-heteromethod correlations, they may eliminate
items that have low correlations with other items measur-
ing the same construct. Likewise, heterogeneous sub-
dimensions in the construct’s set of items could also
deflate the average monotrait-heteromethod correlations.
In this case, researchers may consider splitting the con-
struct into homogenous sub-constructs, if the measure-
ment theory supports this step. These sub-constructs then
replace the more general construct in the model. However,
researchers need to re-evaluate the newly generated con-
structs’ discriminant validity with all the opposing con-
structs in the model. When researchers seek to decrease
the average heteromethod-heterotrait correlations, they

Table 5 Item correlation matrix
acsi1 acsi2 acsi3 cuex1 cuex2 cuex3 perq1 perq2 perq3 perv1 perv2

acsi1 1.000

acsi2 0.770 1.000

acsi3 0.701 0.665 1.000

cuex1 0.426 0.339 0.393 1.000

cuex2 0.423 0.345 0.385 0.574 1.000

cuex3 0.274 0.235 0.250 0.318 0.335 1.000

perq1 0.797 0.705 0.651 0.517 0.472 0.295 1.000

perq2 0.779 0.680 0.635 0.406 0.442 0.268 0.784 1.000

perq3 0.512 0.460 0.410 0.249 0.277 0.362 0.503 0.533 1.000

perv1 0.739 0.656 0.622 0.373 0.359 0.230 0.645 0.619 0.411 1.000

perv2 0.684 0.615 0.579 0.326 0.310 0.200 0.556 0.543 0.354 0.774 1.000

Table 6 HTMT results

ACSI CUEX PERQ PERV

ACSI

CUEX
.63

CI.900 [0.612;0.652]

PERQ
.95

CI.900 [0.945;0.958]

.73

CI.900 [0.713;0.754]

PERV
.87

CI.900 [0.865;0.885]

.53

CI.900 [0.511;0.553]

.76

CI.900 [0.748;0.774]

The two results marked in bold indicate discriminant validity problems according to the HTMT.85 criterion, while the one problem regarding the
HTMT.90 criterion is shaded grey; HTMTinference does not indicate discriminant validity problems in this example
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may consider (1) eliminating items that are strongly cor-
related with items in the opposing construct or (2)
reassigning these indicators to the opposing construct, if
theoretically plausible.

It is important to note that the elimination of items
purely on statistical grounds can have adverse conse-
quences for the construct measures’ content validity
(e.g., Hair et al. 2014). Therefore, researchers should
carefully scrutinize the scales (either based on prior
research results, or on those from a pretest in case of
the newly developed measures) and determine whether
all the construct domain facets have been captured. At
least two expert coders should conduct this judgment

independently to ensure a high degree of objectivity
(Diamantopoulos et al. 2012).

The second approach to treat discriminant validity prob-
lems aims at merging the constructs that cause the problems
into a more general construct. Again, measurement theory
must support this step. In this case, the more general con-
struct replaces the problematic constructs in the model and
researchers need to re-evaluate the newly generated con-
struct’s discriminant validity with all the opposing con-
structs. This step may entail modifications to increase a
construct’s average monotrait-heteromethod correlations
and/or to decrease the average heteromethod-heterotrait cor-
relations (Fig. 8).

Step 1

Selection of the HTMT criterion

Step 2

Discriminant validity assessment 
using the HTMT criterion 

Criterion has been selected

Final
result

Discriminant validity 
has been established

Step 3

Establish discriminant validity 
while keeping the problematic constructs

Discriminant validity 
has not been established

Increase the 
monotrait-heteromethod 

correlations

Decrease the 
heterotrait-heteromethod

correlations

Final
result

Discriminant validity 
has been established

Step 4

Establish discriminant validity 
by merging the problematic constructs and replacing 

them with the new (merged) construct

Discriminant validity 
has not been established

Increase the 
monotrait-heteromethod 
correlations of the new 

construct

Decrease the 
heterotrait-heteromethod

correlations of the new 
construct

Final
result

Discriminant validity 
has been established

Discard model

Discriminant validity 
has not been established

Fig. 8 Guidelines for discriminant validity assessment in variance-based SEM
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Further research and concluding remarks

Our research offers several promising avenues for future re-
search. To begin with, many researchers view variance-based
SEM as the natural approach when the model includes forma-
tively measured constructs (Chin 1998; Fornell and Bookstein
1982; Hair et al. 2012a). Obviously, the discriminant validity
concept is independent of a construct’s concrete
operationalization. Constructs that are conceptually different
should also be empirically different, no matter how they have
been measured, and no matter the types of epistemic relation-
ships between a construct and its indicators. However, just like
the Fornell-Larcker criterion and the (partial) cross-loadings,
the HTMT-based criteria assume reflectively measured con-
structs. Applying them to formatively measured constructs is
problematic, because neither the monotrait-heteromethod nor
the heterotrait-heteromethod correlations of formative indica-
tors are indicat ive of discr iminant val idi ty. As
Diamantopoulos and Winklhofer (2001, p. 271) point out,
“there is no reason that a specific pattern of signs (i.e., positive
versus negative) or magnitude (i.e., high versus moderate
versus low) should characterize the correlations among for-
mative indicators.”

Prior literature gives practically no recommendations on
how to assess the discriminant validity of formatively mea-
sured constructs. One of the few exceptions is the research by
Klein and Rai (2009), who suggest examining the cross-
loadings of formative indicators. Analogous to their reflective
counterparts, formative indicators should correlate more high-
ly with their composite construct score than with the compos-
ite score of other constructs. However, considering the poor
performance of cross-loadings in our study, its use in forma-
tive measurement models appears questionable. Against this
background, future research should seek alternative means to
consider formatively measured constructs when assessing dis-
criminant validity.

Apart from continuously refining, extending, and testing
the HTMT-based validity assessment criteria for variance-
based SEM (e.g., by evaluating their sensitivity to different
base response scales, inducing variance basis differences and
differential response biases), future research should also as-
sess whether this study’s findings can be generalized to
covariance-based SEM techniques, or the recently proposed
consistent PLS (Dijkstra 2014; Dijkstra and Henseler 2014a,
b), which mimics covariance-based SEM. Specifically, the
Fornell-Larcker criterion is a standard approach to assess dis-
criminant validity in covariance-based SEM (Shah and
Goldstein 2006; Shook et al. 2004). Thus, it is necessary to
evaluate whether this criterion suffers from the same limita-
tions in a factor model setting.

In the light of the Fornell-Larcker criterion and the cross-
loadings’ poor performance, researchers should carefully re-
consider the results of prior variance-based SEM analyses.

Failure to properly disclose discriminant validity problems
may result in biased estimations of structural parameters and
inappropriate conclusions about the hypothesized relation-
ships between constructs. Revisiting the analysis results of
prominent models estimated by means of variance-based
SEM, such as the ACSI and the TAM, seems warranted. In
doing so, researchers should analyze the different sources of
discriminant validity problems and apply adequate procedures
to treat them (Fig. 8).

It is important to note, however, that discriminant
validity is not exclusively an empirical means to validate
a model. Theoretical foundations and arguments should
provide reasons for constructs correlating or not (Bollen
and Lennox 1991). According to the holistic construal
process (Bagozzi and Phillips 1982; Bagozzi 1984), per-
haps the most influential psychometric framework for
measurement development and validation (Rigdon
2012), constructs are not necessarily equivalent to the
theoretical concepts at the center of scientific research:
a construct should rather be viewed as “something cre-
ated from the empirical data which is intended to enable
empirical testing of propositions regarding the concept”
(Rigdon 2014, pp. 43–344). Consequently, any derivation
of HTMT thresholds is subjective. On the other hand,
concepts are partly defined by their relationships with
other concepts within a nomological network, a system
of law-like relationships discovered over time and which
anchor each concept. Therefore, hindsight failure to es-
tablish discriminant validity between two constructs does
not necessarily imply that the underlying concepts are
identical, especially when follow-up research provides
continued support for differing relationships with the
antecedent and the resultant concepts (Bagozzi and
Phillips 1982). Nevertheless, our research clearly shows
that future research should pay greater attention to the
empirical validation of discriminant validity to ensure the
rigor of theories’ empirical testing and validation.
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Appendix

In this Appendix we demonstrate that the heterotrait-monotrait
ratio of correlations (HTMT) as presented in the main manu-
script is an estimator of the inter-construct correlation
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Let xi1,…,xiKi be the Ki reflective indicators of construct ξi,
and xj1,…,xjKj the Kj reflective indicators of construct ξj. The
empirical correlation matrix R is then

R ¼

1 ri1;i2 … ri1;iKi ri1; j1 ri1; j2 … ri1; jK j

ri2;i1 1 … ri2;iKi ri2; j1 ri2; j2 … ri2; jK j
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riKi;i1 riKi;i2 … 1 riKi; j1 riKi ; j2 … riKi; jK j
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1
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If the reflective measurement model (i.e., a common factor
model) holds true for both constructs, the implied correlation
matrix Σ is then

Σ¼
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We depart from the notion that Cronbach’s alpha is

α ¼ K ⋅r�
1þ K−1ð Þ⋅r� ðA3Þ
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Moreover, the composite reliability ρc, is:
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If a construct’s indicators are tau-equivalent, Cronbach’s
alpha is a consistent estimate of a set of indicators just like the
composite reliability ρc, which implies that:
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The HTMTij of constructs ξi and ξj as introduced in the
manuscript is then:
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